```go
package main
import (
"bufio"
"fmt"
"os"
"strconv"
)
func main() {
// Configure scanner for fast I/O
// ScanWords allows reading integers separated by spaces or newlines
scanner := bufio.NewScanner(os.Stdin)
scanner.Split(bufio.ScanWords)
// Configure writer for fast output
writer := bufio.NewWriter(os.Stdout)
defer writer.Flush()
// Read n
if !scanner.Scan() {
return
}
n, err := strconv.Atoi(scanner.Text())
if err != nil {
return
}
N := 1 << n
sz := n + 1
// Use int32 to save memory; n=20 requires ~84MB which is safe.
// data array stores polynomial coefficients for each mask.
// data[i * sz + k] corresponds to the coefficient of z^{-k} for mask i.
data := make([]int32, N*sz)
// Read sets V_i
// The input gives V_1, V_2, ..., V_{2^n-1}
for i := 1; i < N; i++ {
if !scanner.Scan() {
break
}
v, _ := strconv.Atoi(scanner.Text())
// Initialize violations
// For a subset T with index i, valid intersection sizes are those k where k-th bit of v is 1.
// If bit k is 0, size k is a violation.
// We initialize the polynomial for T such that the coefficient for k is 1 if it's a violation.
base := i * sz
for k := 0; k < sz; k++ {
if (v>>k)&1 == 0 {
data[base+k] = 1
}
}
}
// Buffer to store the old values of the 'v' branch in the butterfly operation
temp := make([]int32, sz)
// Perform the transform.
// The transform kernel is M_{x,y} = z^{|x & y|}.
// In the butterfly step for bit j:
// A_u_new = A_u + A_v
// A_v_new = A_u + z * A_v
// Since we track coefficients of z^{-k}, multiplying by z shifts coefficients: [z^{-k}](z P) = [z^{-(k+1)}] P.
// So new_coeff[k] comes from old_coeff[k+1].
for j := 0; j < n; j++ {
bit := 1 << j
for i := 0; i < N; i += 2 * bit {
for k := 0; k < bit; k++ {
u := i + k
v := u + bit
idxU := u * sz
idxV := v * sz
// Copy A_v (current values) to temp because A_u update will overwrite needed values,
// and A_v update needs old A_v values.
for m := 0; m < sz; m++ {
temp[m] = data[idxV+m]
}
for m := 0; m < sz; m++ {
valU := data[idxU+m]
valV := temp[m]
// Update A_u: sum of branches
data[idxU+m] = valU + valV
// Update A_v: A_u + shifted A_v
// The term from A_v corresponds to multiplying by z, so we take index m+1.
shifted := int32(0)
if m+1 < sz {
shifted = temp[m+1]
}
data[idxV+m] = valU + shifted
}
}
}
}
// Collect valid S
// After the transform, data[x][0] contains the total number of violations for set x.
// If it is 0, the set x is valid.
ans := make([]int, 0)
for x := 0; x < N; x++ {
if data[x*sz] == 0 {
ans = append(ans, x)
}
}
// Output results
fmt.Fprintln(writer, len(ans))
for _, val := range ans {
fmt.Fprintln(writer, val)
}
}
```