For problem statement at 0-999/400-499/440-449/448/problemE.txt this is a correct solution, but verifier at 0-999/400-499/440-449/448/verifierE.go ends with All tests passed can you fix the verifier? An efficient Go solution to the problem.
```go
package main
import (
"bufio"
"fmt"
"os"
"sort"
)
func main() {
// Configure fast I/O
reader := bufio.NewReader(os.Stdin)
writer := bufio.NewWriter(os.Stdout)
defer writer.Flush()
var X, k uint64
// Read X and k
if _, err := fmt.Fscan(reader, &X, &k); err != nil {
return
}
// Case 1: X = 1. The sequence is always [1].
if X == 1 {
fmt.Fprint(writer, "1")
return
}
// Case 2: k = 0. The sequence is [X].
if k == 0 {
fmt.Fprint(writer, X)
return
}
// Case 3: k >= 100000.
// For X > 1, the sequence X_k starts with at least k ones.
// Since we only need the first 100000 elements, and k >= 100000,
// the output is simply 100000 ones.
if k >= 100000 {
for i := 0; i < 100000; i++ {
if i > 0 {
writer.WriteByte(' ')
}
writer.WriteByte('1')
}
return
}
// Case 4: k < 100000. We perform a DFS on the divisor tree.
// Step 4a: Find all divisors of X
divs := make([]uint64, 0, 2048)
for i := uint64(1); i*i <= X; i++ {
if X%i == 0 {
divs = append(divs, i)
if i*i != X {
divs = append(divs, X/i)
}
}
}
// Sort divisors to ensure correct order
sort.Slice(divs, func(i, j int) bool { return divs[i] < divs[j] })
// Step 4b: Build adjacency list (divisors for each divisor)
// We map the index in `divs` to a list of indices of its divisors.
n := len(divs)
adj := make([][]int, n)
for i := 0; i < n; i++ {
val := divs[i]
// Since divs is sorted, divisors of val are at indices <= i
var children []int
for j := 0; j <= i; j++ {
if val%divs[j] == 0 {
children = append(children, j)
}
}
adj[i] = children
}
count := 0
limit := 100000
// Step 4c: DFS function
var dfs func(uIdx int, depth uint64)
dfs = func(uIdx int, depth uint64) {
if count >= limit {
return
}
// Base case: depth reached
if depth == 0 {
if count > 0 {
writer.WriteByte(' ')
}
fmt.Fprint(writer, divs[uIdx])
count++
return
}
// Optimization: The divisor 1 (index 0) always expands to [1].
// If current node is 1, just print 1.
if uIdx == 0 {
if count > 0 {
writer.WriteByte(' ')
}
writer.WriteByte('1')
count++
return
}
// For any X > 1, the first divisor is 1.
// Instead of recursing on 1 (which just outputs 1), handle it directly.
if count > 0 {
writer.WriteByte(' ')
}
writer.WriteByte('1')
count++
if count >= limit {
return
}
// Recurse on other divisors
children := adj[uIdx]
// Skip the first child (index 0, value 1) as it's handled above
for i := 1; i < len(children); i++ {
dfs(children[i], depth-1)
if count >= limit {
return
}
}
}
// Start DFS from X (which is the last element in sorted divisors)
dfs(n-1, k)
}
```