Description: Завтра у хоккейной команды, которой руководит Евгений, важный матч. Евгению нужно выбрать шесть игроков, которые выйдут на лед в стартовом составе: один вратарь, два защитника и три нападающих. Так как это стартовый состав, Евгения больше волнует, насколько красива будет команда на льду, чем способности игроков. А именно, Евгений хочет выбрать такой стартовый состав, чтобы номера любых двух игроков из стартового состава отличались не более, чем в два раза. Например, игроки с номерами 13, 14, 10, 18, 15 и 20 устроят Евгения, а если, например, на лед выйдут игроки с номерами 8 и 17, то это не устроит Евгения. Про каждого из игроков вам известно, на какой позиции он играет (вратарь, защитник или нападающий), а также его номер. В хоккее номера игроков не обязательно идут подряд. Посчитайте число различных стартовых составов из одного вратаря, двух защитников и трех нападающих, которые может выбрать Евгений, чтобы выполнялось его условие красоты. Input Format: Первая строка содержит три целых числа g, d и f (1 ≤ g ≤ 1 000, 1 ≤ d ≤ 1 000, 1 ≤ f ≤ 1 000) — число вратарей, защитников и нападающих в команде Евгения. Вторая строка содержит g целых чисел, каждое в пределах от 1 до 100 000 — номера вратарей. Третья строка содержит d целых чисел, каждое в пределах от 1 до 100 000 — номера защитников. Четвертая строка содержит f целых чисел, каждое в пределах от 1 до 100 000 — номера нападающих. Гарантируется, что общее количество игроков не превосходит 1 000, т. е. g + d + f ≤ 1 000. Все g + d + f номеров игроков различны. Output Format: Выведите одно целое число — количество возможных стартовых составов. Note: В первом примере всего один вариант для выбора состава, который удовлетворяет описанным условиям, поэтому ответ 1. Во втором примере подходят следующие игровые сочетания (в порядке вратарь-защитник-защитник-нападающий-нападающий-нападающий): - 16 20 12 13 21 11 - 16 20 12 13 11 10 - 16 20 19 13 21 11 - 16 20 19 13 11 10 - 16 12 19 13 21 11 - 16 12 19 13 11 10 Таким образом, ответ на этот пример — 6.