Problem E

Statement
Copy Copied
Description:
You are given a directed acyclic graph with n vertices and m edges. There are no self-loops or multiple edges between any pair of vertices. Graph can be disconnected.

You should assign labels to all vertices in such a way that:

- Labels form a valid permutation of length n — an integer sequence such that each integer from 1 to n appears exactly once in it.
- If there exists an edge from vertex v to vertex u then labelv should be smaller than labelu.
- Permutation should be lexicographically smallest among all suitable.

Find such sequence of labels to satisfy all the conditions.

Input Format:
The first line contains two integer numbers n, m (2 ≤ n ≤ 105, 1 ≤ m ≤ 105).

Next m lines contain two integer numbers v and u (1 ≤ v, u ≤ n, v ≠ u) — edges of the graph. Edges are directed, graph doesn't contain loops or multiple edges.

Output Format:
Print n numbers — lexicographically smallest correct permutation of labels of vertices.

Note:
None