Description: On the way to school, Karen became fixated on the puzzle game on her phone! The game is played as follows. In each level, you have a grid with n rows and m columns. Each cell originally contains the number 0. One move consists of choosing one row or column, and adding 1 to all of the cells in that row or column. To win the level, after all the moves, the number in the cell at the i-th row and j-th column should be equal to gi, j. Karen is stuck on one level, and wants to know a way to beat this level using the minimum number of moves. Please, help her with this task! Input Format: The first line of input contains two integers, n and m (1 ≤ n, m ≤ 100), the number of rows and the number of columns in the grid, respectively. The next n lines each contain m integers. In particular, the j-th integer in the i-th of these rows contains gi, j (0 ≤ gi, j ≤ 500). Output Format: If there is an error and it is actually not possible to beat the level, output a single integer -1. Otherwise, on the first line, output a single integer k, the minimum number of moves necessary to beat the level. The next k lines should each contain one of the following, describing the moves in the order they must be done: - row x, (1 ≤ x ≤ n) describing a move of the form "choose the x-th row". - col x, (1 ≤ x ≤ m) describing a move of the form "choose the x-th column". If there are multiple optimal solutions, output any one of them. Note: In the first test case, Karen has a grid with 3 rows and 5 columns. She can perform the following 4 moves to beat the level: In the second test case, Karen has a grid with 3 rows and 3 columns. It is clear that it is impossible to beat the level; performing any move will create three 1s on the grid, but it is required to only have one 1 in the center. In the third test case, Karen has a grid with 3 rows and 3 columns. She can perform the following 3 moves to beat the level: Note that this is not the only solution; another solution, among others, is col 1, col 2, col 3.