Problem B

Statement
Copy Copied
Description:
Sherlock has a new girlfriend (so unlike him!). Valentine's day is coming and he wants to gift her some jewelry.

He bought n pieces of jewelry. The i-th piece has price equal to i + 1, that is, the prices of the jewelry are 2, 3, 4, ... n + 1.

Watson gave Sherlock a challenge to color these jewelry pieces such that two pieces don't have the same color if the price of one piece is a prime divisor of the price of the other piece. Also, Watson asked him to minimize the number of different colors used.

Help Sherlock complete this trivial task.

Input Format:
The only line contains single integer n (1 ≤ n ≤ 100000) — the number of jewelry pieces.

Output Format:
The first line of output should contain a single integer k, the minimum number of colors that can be used to color the pieces of jewelry with the given constraints.

The next line should consist of n space-separated integers (between 1 and k) that specify the color of each piece in the order of increasing price.

If there are multiple ways to color the pieces using k colors, you can output any of them.

Note:
In the first input, the colors for first, second and third pieces of jewelry having respective prices 2, 3 and 4 are 1, 1 and 2 respectively.

In this case, as 2 is a prime divisor of 4, colors of jewelry having prices 2 and 4 must be distinct.