Description: Recently Duff has been a soldier in the army. Malek is her commander. Their country, Andarz Gu has n cities (numbered from 1 to n) and n - 1 bidirectional roads. Each road connects two different cities. There exist a unique path between any two cities. There are also m people living in Andarz Gu (numbered from 1 to m). Each person has and ID number. ID number of i - th person is i and he/she lives in city number ci. Note that there may be more than one person in a city, also there may be no people living in the city. Malek loves to order. That's why he asks Duff to answer to q queries. In each query, he gives her numbers v, u and a. To answer a query: Assume there are x people living in the cities lying on the path from city v to city u. Assume these people's IDs are p1, p2, ..., px in increasing order. If k = min(x, a), then Duff should tell Malek numbers k, p1, p2, ..., pk in this order. In the other words, Malek wants to know a minimums on that path (or less, if there are less than a people). Duff is very busy at the moment, so she asked you to help her and answer the queries. Input Format: The first line of input contains three integers, n, m and q (1 ≤ n, m, q ≤ 105). The next n - 1 lines contain the roads. Each line contains two integers v and u, endpoints of a road (1 ≤ v, u ≤ n, v ≠ u). Next line contains m integers c1, c2, ..., cm separated by spaces (1 ≤ ci ≤ n for each 1 ≤ i ≤ m). Next q lines contain the queries. Each of them contains three integers, v, u and a (1 ≤ v, u ≤ n and 1 ≤ a ≤ 10). Output Format: For each query, print numbers k, p1, p2, ..., pk separated by spaces in one line. Note: Graph of Andarz Gu in the sample case is as follows (ID of people in each city are written next to them):