Problem D

Statement
Copy Copied
Description:
Given a sequence of integers a1, ..., an and q queries x1, ..., xq on it. For each query xi you have to count the number of pairs (l, r) such that 1 ≤ l ≤ r ≤ n and gcd(al, al + 1, ..., ar) = xi.

$$\gcd(v_{1},v_{2},\ldots,v_{n})$$ is a greatest common divisor of v1, v2, ..., vn, that is equal to a largest positive integer that divides all vi.

Input Format:
The first line of the input contains integer n, (1 ≤ n ≤ 105), denoting the length of the sequence. The next line contains n space separated integers a1, ..., an, (1 ≤ ai ≤ 109).

The third line of the input contains integer q, (1 ≤ q ≤ 3 × 105), denoting the number of queries. Then follows q lines, each contain an integer xi, (1 ≤ xi ≤ 109).

Output Format:
For each query print the result in a separate line.

Note:
None