Description: This time our child has a simple polygon. He has to find the number of ways to split the polygon into non-degenerate triangles, each way must satisfy the following requirements: - each vertex of each triangle is one of the polygon vertex; - each side of the polygon must be the side of exactly one triangle; - the area of intersection of every two triangles equals to zero, and the sum of all areas of triangles equals to the area of the polygon; - each triangle must be completely inside the polygon; - each side of each triangle must contain exactly two vertices of the polygon. The picture below depicts an example of a correct splitting. Please, help the child. Calculate the described number of ways modulo 1000000007 (109 + 7) for him. Input Format: The first line contains one integer n (3 ≤ n ≤ 200) — the number of vertices of the polygon. Then follow n lines, each line containing two integers. The i-th line contains xi, yi (|xi|, |yi| ≤ 107) — the i-th vertex of the polygon in clockwise or counterclockwise order. It's guaranteed that the polygon is simple. Output Format: Output the number of ways modulo 1000000007 (109 + 7). Note: In the first sample, there are two possible splittings: In the second sample, there are only one possible splitting: