Problem E

Statement
Copy Copied
Description:
Yaroslav has n points that lie on the Ox axis. The coordinate of the first point is x1, the coordinate of the second point is x2, ..., the coordinate of the n-th point is — xn. Now Yaroslav wants to execute m queries, each of them is of one of the two following types:

1. Move the pj-th point from position xpj to position xpj + dj. At that, it is guaranteed that after executing such query all coordinates of the points will be distinct.
2. Count the sum of distances between all pairs of points that lie on the segment [lj, rj] (lj ≤ rj). In other words, you should count the sum of: $$\sum_{l_j \leq x_p \leq x_q \leq r_j} (x_q - x_p)$$.

Help Yaroslav.

Input Format:
The first line contains integer n — the number of points (1 ≤ n ≤ 105). The second line contains distinct integers x1, x2, ..., xn — the coordinates of points (|xi| ≤ 109).

The third line contains integer m — the number of queries (1 ≤ m ≤ 105). The next m lines contain the queries. The j-th line first contains integer tj (1 ≤ tj ≤ 2) — the query type. If tj = 1, then it is followed by two integers pj and dj (1 ≤ pj ≤ n, |dj| ≤ 1000). If tj = 2, then it is followed by two integers lj and rj ( - 109 ≤ lj ≤ rj ≤ 109).

It is guaranteed that at any moment all the points have distinct coordinates.

Output Format:
For each type 2 query print the answer on a single line. Print the answers in the order, in which the queries follow in the input.

Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams of the %I64d specifier.

Note:
None