Description: The Little Elephant loves trees very much, he especially loves root trees. He's got a tree consisting of n nodes (the nodes are numbered from 1 to n), with root at node number 1. Each node of the tree contains some list of numbers which initially is empty. The Little Elephant wants to apply m operations. On the i-th operation (1 ≤ i ≤ m) he first adds number i to lists of all nodes of a subtree with the root in node number ai, and then he adds number i to lists of all nodes of the subtree with root in node bi. After applying all operations the Little Elephant wants to count for each node i number ci — the number of integers j (1 ≤ j ≤ n; j ≠ i), such that the lists of the i-th and the j-th nodes contain at least one common number. Help the Little Elephant, count numbers ci for him. Input Format: The first line contains two integers n and m (1 ≤ n, m ≤ 105) — the number of the tree nodes and the number of operations. Each of the following n - 1 lines contains two space-separated integers, ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi), that mean that there is an edge between nodes number ui and vi. Each of the following m lines contains two space-separated integers, ai and bi (1 ≤ ai, bi ≤ n, ai ≠ bi), that stand for the indexes of the nodes in the i-th operation. It is guaranteed that the given graph is an undirected tree. Output Format: In a single line print n space-separated integers — c1, c2, ..., cn. Note: None