Problem E

Statement
Copy Copied
E. Prefix GCDtime limit per test2 secondsmemory limit per test256 megabytesinputstandard inputoutputstandard outputSince Mansur is tired of making legends, there will be no legends for this task.You are given an array of positive integer numbers $$$a_1, a_2, \ldots, a_n$$$. The elements of the array can be rearranged in any order. You need to find the smallest possible value of the expression $$$$$$\gcd(a_1) + \gcd(a_1, a_2) + \ldots + \gcd(a_1, a_2, \ldots, a_n),$$$$$$ where $$$\gcd(a_1, a_2, \ldots, a_n)$$$ denotes the greatest common divisor (GCD) of $$$a_1, a_2, \ldots, a_n$$$.InputEach test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). The description of the test cases follows.The first line of each test case contains a single number $$$n$$$ ($$$1 \le n \le 10^5$$$) — the size of the array.The second line of each test case contains $$$n$$$ numbers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^5$$$) — the initial array.The sum of $$$n$$$ over all test cases does not exceed $$$10^5$$$.The sum of $$$\max(a_1, a_2, \ldots, a_n)$$$ over all test cases does not exceed $$$10^5$$$.OutputFor each test case, output a single number on a separate line — the answer to the problem.ExampleInput534 2 226 3310 15 656 42 12 52 20442 154 231 66Output6
6
9
14
51
NoteIn the first test case, the elements can be rearranged as follows: $$$[2, 4, 2]$$$. Then the answer will be $$$\gcd(2) + \gcd(2, 4) + \gcd(2, 4, 2) = 2 + 2 + 2 = 6$$$.In the third test case, the elements can be rearranged as follows: $$$[6, 10, 15]$$$. Then the answer will be $$$\gcd(6) + \gcd(6, 10) + \gcd(6, 10, 15) = 6 + 2 + 1 = 9$$$.