Problem G

Statement
Copy Copied
G. Substring Compressiontime limit per test2 secondsmemory limit per test1024 megabytesinputstandard inputoutputstandard outputLet's define the operation of compressing a string $$$t$$$, consisting of at least $$$2$$$ digits from $$$1$$$ to $$$9$$$, as follows:   split it into an even number of non-empty substrings — let these substrings be $$$t_1, t_2, \dots, t_m$$$ (so, $$$t = t_1 + t_2 + \dots + t_m$$$, where $$$+$$$ is the concatenation operation);  write the string $$$t_2$$$ $$$t_1$$$ times, then the string $$$t_4$$$ $$$t_3$$$ times, and so on. For example, for a string "12345", one could do the following: split it into ("1", "23", "4", "5"), and write "235555".Let the function $$$f(t)$$$ for a string $$$t$$$ return the minimum length of the string that can be obtained as a result of that process.You are given a string $$$s$$$, consisting of $$$n$$$ digits from $$$1$$$ to $$$9$$$, and an integer $$$k$$$. Calculate the value of the function $$$f$$$ for all contiguous substrings of $$$s$$$ of length exactly $$$k$$$.InputThe first line contains two integers $$$n$$$ and $$$k$$$ ($$$2 \le k \le n \le 2 \cdot 10^5$$$).The second line contains the string $$$s$$$ ($$$|s| = n$$$), consisting only of digits from $$$1$$$ to $$$9$$$.OutputOutput $$$n - k + 1$$$ integers — $$$f(s_{1,k}), f(s_{2,k+1}), \dots, f(s_{n - k + 1, n})$$$.ExamplesInput4 45999Output14 
Input10 31111111111Output2 2 2 2 2 2 2 2 
Input11 449998641312Output12 18 17 15 12 7 7 2