Problem B

Statement
Copy Copied
Description:
For an array $$$b$$$ of size $$$m$$$, we define:

- the maximum prefix position of $$$b$$$ is the smallest index $$$i$$$ that satisfies $$$b_1+\ldots+b_i=\max_{j=1}^{m}(b_1+\ldots+b_j)$$$;
- the maximum suffix position of $$$b$$$ is the largest index $$$i$$$ that satisfies $$$b_i+\ldots+b_m=\max_{j=1}^{m}(b_j+\ldots+b_m)$$$.

You are given three integers $$$n$$$, $$$x$$$, and $$$y$$$ ($$$x > y$$$). Construct an array $$$a$$$ of size $$$n$$$ satisfying:

- $$$a_i$$$ is either $$$1$$$ or $$$-1$$$ for all $$$1 \le i \le n$$$;
- the maximum prefix position of $$$a$$$ is $$$x$$$;
- the maximum suffix position of $$$a$$$ is $$$y$$$.

If there are multiple arrays that meet the conditions, print any. It can be proven that such an array always exists under the given conditions.

Input Format:
The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 10^4$$$) — the number of test cases.

For each test case:

- The only line contains three integers $$$n$$$, $$$x$$$, and $$$y$$$ ($$$2 \leq n \leq 10^5, 1 \le y \lt x \le n)$$$.

It is guaranteed that the sum of $$$n$$$ over all test cases will not exceed $$$10^5$$$.

Output Format:
For each test case, output $$$n$$$ space-separated integers $$$a_1, a_2, \ldots, a_n$$$ in a new line.

Note:
In the second test case,

- $$$i=x=4$$$ is the smallest index that satisfies $$$a_1+\ldots +a_i=\max_{j=1}^{n}(a_1+\ldots+a_j)=2$$$;
- $$$i=y=3$$$ is the greatest index that satisfies $$$a_i+\ldots +a_n=\max_{j=1}^{n}(a_j+\ldots+a_n)=2$$$.

Thus, the array $$$a=[1,-1,1,1]$$$ is considered correct.