Problem F

Statement
Copy Copied
Description:
Given an array $$$a$$$ of length $$$n$$$. Let's construct a square matrix $$$b$$$ of size $$$n \times n$$$, in which the $$$i$$$-th row contains the array $$$a$$$ cyclically shifted to the right by $$$(i - 1)$$$. For example, for the array $$$a = [3, 4, 5]$$$, the obtained matrix is

$$$$$$b = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 3 & 4 \\ 4 & 5 & 3 \end{bmatrix}$$$$$$

Let's construct the following graph:

- The graph contains $$$n^2$$$ vertices, each of which corresponds to one of the elements of the matrix. Let's denote the vertex corresponding to the element $$$b_{i, j}$$$ as $$$(i, j)$$$.
- We will draw an edge between vertices $$$(i_1, j_1)$$$ and $$$(i_2, j_2)$$$ if $$$|i_1 - i_2| + |j_1 - j_2| \le k$$$ and $$$\gcd(b_{i_1, j_1}, b_{i_2, j_2}) > 1$$$, where $$$\gcd(x, y)$$$ denotes the greatest common divisor of integers $$$x$$$ and $$$y$$$.

Your task is to calculate the number of connected components$$$^{\dagger}$$$ in the obtained graph.

$$$^{\dagger}$$$A connected component of a graph is a set of vertices in which any vertex is reachable from any other via edges, and adding any other vertex to the set violates this rule.

Input Format:
Each test consists of multiple test cases. The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10^5$$$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers $$$n$$$ and $$$k$$$ ($$$2 \le n \le 10^6$$$, $$$2 \le k \le 2 \cdot 10^6$$$) — the length of the array and the parameter $$$k$$$.

The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^6$$$) — the elements of the array $$$a$$$.

It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$10^6$$$.

Output Format:
For each test case, output a single integer — the number of connected components in the obtained graph.

Note:
In the first test case, the matrix $$$b$$$ is given in the statement. The first connected component contains the vertices $$$(1, 1)$$$, $$$(2, 2)$$$, and $$$(3, 3)$$$. The second connected component contains the vertices $$$(1, 2)$$$, $$$(2, 3)$$$, and $$$(3, 1)$$$. The third connected component contains the vertices $$$(1, 3)$$$, $$$(2, 1)$$$, and $$$(3, 2)$$$. Thus, the graph has $$$3$$$ connected components.

In the second test case, the following matrix is obtained:

$$$$$$b = \begin{bmatrix} 3 & 4 & 9 \\ 9 & 3 & 4 \\ 4 & 9 & 3 \end{bmatrix}$$$$$$

The first connected component contains all vertices corresponding to elements with values $$$3$$$ and $$$9$$$. The second connected component contains all vertices corresponding to elements with the value $$$4$$$.

In the fourth test case, all vertices are in one connected component.