Description: Mocha likes arrays, so before her departure, 378QAQ gave her an array $$$a$$$ consisting of $$$n$$$ positive integers as a gift. Mocha thinks that $$$a$$$ is beautiful if there exist two numbers $$$i$$$ and $$$j$$$ ($$$1\leq i,j\leq n$$$, $$$i\neq j$$$) such that for all $$$k$$$ ($$$1 \leq k \leq n$$$), $$$a_k$$$ is divisible$$$^\dagger$$$ by either $$$a_i$$$ or $$$a_j$$$. Determine whether $$$a$$$ is beautiful. $$$^\dagger$$$ $$$x$$$ is divisible by $$$y$$$ if there exists an integer $$$z$$$ such that $$$x = y \cdot z$$$. Input Format: Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1\leq t\leq 500$$$). The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$3\leq n\leq 10^5$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1,a_2,\ldots,a_n$$$ ($$$1\leq a_i \leq 10^9$$$) — the elements of the array $$$a$$$. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$10^5$$$. Output Format: For each test case, output "Yes" if array $$$a$$$ is beautiful, and output "No" otherwise. You can output "Yes" and "No" in any case (for example, strings "yEs", "yes", "Yes" and "YES" will be recognized as a positive response). Note: In the first test case, any two numbers in the array are coprime, so the answer is "No". In the second test case, we can pick $$$i=2$$$ and $$$j=1$$$. Since every number in the array is divisible by $$$a_i = 1$$$, the answer is "Yes". In the third test case, we can pick $$$i=3$$$ and $$$j=5$$$. $$$2$$$ and $$$4$$$ is divisible by $$$a_i = 2$$$ while $$$3$$$, $$$6$$$ and $$$12$$$ is divisible by $$$a_j = 3$$$, so the answer is "Yes".