Problem A

Statement
Copy Copied
Description:
Given an array $$$a$$$ of $$$n$$$ elements, find the maximum value of the expression:

$$$$$$|a_i - a_j| + |a_j - a_k| + |a_k - a_l| + |a_l - a_i|$$$$$$

where $$$i$$$, $$$j$$$, $$$k$$$, and $$$l$$$ are four distinct indices of the array $$$a$$$, with $$$1 \le i, j, k, l \le n$$$.

Here $$$|x|$$$ denotes the absolute value of $$$x$$$.

Input Format:
The first line contains one integer $$$t$$$ ($$$1 \le t \le 500$$$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer $$$n$$$ ($$$4 \le n \le 100$$$) — the length of the given array.

The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$-10^6 \le a_i \le 10^6$$$).

Output Format:
For each test case, print a single integer — the maximum value.

Note:
In the first test case, for any selection of $$$i$$$, $$$j$$$, $$$k$$$, $$$l$$$, the answer will be $$$0$$$. For example, $$$|a_1 - a_2| + |a_2 - a_3| + |a_3 - a_4| + |a_4 - a_1| = |1 - 1| + |1 - 1| + |1 - 1| + |1 - 1| = 0 + 0 + 0 + 0 = 0$$$.

In the second test case, for $$$i = 1$$$, $$$j = 3$$$, $$$k = 2$$$, and $$$l = 5$$$, the answer will be $$$6$$$. $$$|a_1 - a_3| + |a_3 - a_2| + |a_2 - a_5| + |a_5 - a_1| = |1 - 2| + |2 - 1| + |1 - 3| + |3 - 1| = 1 + 1 + 2 + 2 = 6$$$.