Description:
Victor wants to become "Mr. Perfectly Fine". For that, he needs to acquire a certain set of skills. More precisely, he has $$$2$$$ skills he needs to acquire.
Victor has $$$n$$$ books. Reading book $$$i$$$ takes him $$$m_i$$$ minutes and will give him some (possibly none) of the required two skills, represented by a binary string of length $$$2$$$.
What is the minimum amount of time required so that Victor acquires all of the two skills?
Input Format:
The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 1000$$$) — the number of test cases. The description of the test cases follows.
The first line of each test case contains an integer $$$n$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$) — the number of books available.
Then $$$n$$$ lines follow. Line $$$i$$$ contains a positive integer $$$m_i$$$ ($$$1 \leq m_i \leq 2 \cdot 10^5$$$) and a binary string of length $$$2$$$, where $$$s_{i1} = 1$$$ if reading book $$$i$$$ acquires Victor skill $$$1$$$, and $$$s_{i1} = 0$$$ otherwise, and $$$s_{i2} = 1$$$ if reading book $$$i$$$ acquires Victor skill $$$2$$$, and $$$s_{i2} = 0$$$ otherwise.
It is guaranteed that the sum of $$$n$$$ over all test cases doesn't exceed $$$2 \cdot 10^5$$$.
Output Format:
For each test case, output a single integer denoting the minimum amount of minutes required for Victor to obtain both needed skills and $$$-1$$$ in case it's impossible to obtain the two skills after reading any amount of books.
Note:
In the first test case, we can use books $$$2$$$ and $$$3$$$, with a total amount of minutes spent equal to $$$3 + 4 = 7$$$.
In the second test case, we can use the books $$$1$$$ and $$$4$$$, with a total amount of minutes spent equal to $$$3 + 2 = 5$$$.
In the third test case, we have only one option and that is reading book $$$1$$$ for a total amount of minutes spent equal to $$$5$$$.