Description: A wild basilisk just appeared at your doorstep. You are not entirely sure what a basilisk is and you wonder whether it evolved from your favorite animal, the weasel. How can you find out whether basilisks evolved from weasels? Certainly, a good first step is to sequence both of their DNAs. Then you can try to check whether there is a sequence of possible mutations from the DNA of the weasel to the DNA of the basilisk. Your friend Ron is a talented alchemist and has studied DNA sequences in many of his experiments. He has found out that DNA strings consist of the letters A, B and C and that single mutations can only remove or add substrings at any position in the string (a substring is a contiguous sequence of characters). The substrings that can be removed or added by a mutation are AA, BB, CC, ABAB or BCBC. During a sequence of mutations a DNA string may even become empty. Ron has agreed to sequence the DNA of the weasel and the basilisk for you, but finding out whether there is a sequence of possible mutations that leads from one to the other is too difficult for him, so you have to do it on your own. Input Format: Each test contains multiple test cases. The first line contains an integer $$$t$$$ ($$$1\le t\le 100$$$) — the number of test cases. The descriptions of the $$$t$$$ test cases follow. The first line of each test case contains a string $$$u$$$ ($$$1\le |u|\le 200$$$) — the DNA of the weasel. The second line of each test case contains a string $$$v$$$ ($$$1\le |v|\le 200$$$) — the DNA of the basilisk. The values $$$|u|$$$, $$$|v|$$$ denote the lengths of the strings $$$u$$$ and $$$v$$$. It is guaranteed that both strings $$$u$$$ and $$$v$$$ consist of the letters A, B and C. Output Format: For each test case, print YES if there is a sequence of mutations to get from $$$u$$$ to $$$v$$$ and NO otherwise. Note: None