Problem D

Statement
Copy Copied
Description:
Let's call an integer array $$$a_1, a_2, \dots, a_n$$$ good if $$$a_i \neq i$$$ for each $$$i$$$.

Let $$$F(a)$$$ be the number of pairs $$$(i, j)$$$ ($$$1 \le i < j \le n$$$) such that $$$a_i + a_j = i + j$$$.

Let's say that an array $$$a_1, a_2, \dots, a_n$$$ is excellent if:

- $$$a$$$ is good;
- $$$l \le a_i \le r$$$ for each $$$i$$$;
- $$$F(a)$$$ is the maximum possible among all good arrays of size $$$n$$$.

Given $$$n$$$, $$$l$$$ and $$$r$$$, calculate the number of excellent arrays modulo $$$10^9 + 7$$$.

Input Format:
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases.

The first and only line of each test case contains three integers $$$n$$$, $$$l$$$, and $$$r$$$ ($$$2 \le n \le 2 \cdot 10^5$$$; $$$-10^9 \le l \le 1$$$; $$$n \le r \le 10^9$$$).

It's guaranteed that the sum of $$$n$$$ doesn't exceed $$$2 \cdot 10^5$$$.

Output Format:
For each test case, print the number of excellent arrays modulo $$$10^9 + 7$$$.

Note:
In the first test case, it can be proven that the maximum $$$F(a)$$$ among all good arrays $$$a$$$ is equal to $$$2$$$. The excellent arrays are:

1. $$$[2, 1, 2]$$$;
2. $$$[0, 3, 2]$$$;
3. $$$[2, 3, 2]$$$;
4. $$$[3, 0, 1]$$$.