Description: You are given an array $$$a$$$ of $$$n$$$ integers. Find the number of pairs $$$(i, j)$$$ ($$$1 \le i < j \le n$$$) where the sum of $$$a_i + a_j$$$ is greater than or equal to $$$l$$$ and less than or equal to $$$r$$$ (that is, $$$l \le a_i + a_j \le r$$$). For example, if $$$n = 3$$$, $$$a = [5, 1, 2]$$$, $$$l = 4$$$ and $$$r = 7$$$, then two pairs are suitable: - $$$i=1$$$ and $$$j=2$$$ ($$$4 \le 5 + 1 \le 7$$$); - $$$i=1$$$ and $$$j=3$$$ ($$$4 \le 5 + 2 \le 7$$$). Input Format: The first line contains an integer $$$t$$$ ($$$1 \le t \le 10^4$$$). Then $$$t$$$ test cases follow. The first line of each test case contains three integers $$$n, l, r$$$ ($$$1 \le n \le 2 \cdot 10^5$$$, $$$1 \le l \le r \le 10^9$$$) — the length of the array and the limits on the sum in the pair. The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$). It is guaranteed that the sum of $$$n$$$ overall test cases does not exceed $$$2 \cdot 10^5$$$. Output Format: For each test case, output a single integer — the number of index pairs $$$(i, j)$$$ ($$$i < j$$$), such that $$$l \le a_i + a_j \le r$$$. Note: None