Description: To satisfy his love of matching socks, Phoenix has brought his $$$n$$$ socks ($$$n$$$ is even) to the sock store. Each of his socks has a color $$$c_i$$$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: - recolor a sock to any color $$$c'$$$ $$$(1 \le c' \le n)$$$ - turn a left sock into a right sock - turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $$$n/2$$$ matching pairs? Each sock must be included in exactly one matching pair. Input Format: The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. The first line of each test case contains three integers $$$n$$$, $$$l$$$, and $$$r$$$ ($$$2 \le n \le 2 \cdot 10^5$$$; $$$n$$$ is even; $$$0 \le l, r \le n$$$; $$$l+r=n$$$) — the total number of socks, and the number of left and right socks, respectively. The next line contains $$$n$$$ integers $$$c_i$$$ ($$$1 \le c_i \le n$$$) — the colors of the socks. The first $$$l$$$ socks are left socks, while the next $$$r$$$ socks are right socks. It is guaranteed that the sum of $$$n$$$ across all the test cases will not exceed $$$2 \cdot 10^5$$$. Output Format: For each test case, print one integer — the minimum cost for Phoenix to make $$$n/2$$$ matching pairs. Each sock must be included in exactly one matching pair. Note: In the first test case, Phoenix can pay $$$2$$$ dollars to: - recolor sock $$$1$$$ to color $$$2$$$ - recolor sock $$$3$$$ to color $$$2$$$ In the second test case, Phoenix can pay $$$3$$$ dollars to: - turn sock $$$6$$$ from a right sock to a left sock - recolor sock $$$3$$$ to color $$$1$$$ - recolor sock $$$4$$$ to color $$$1$$$