Description: Let $$$a$$$ and $$$b$$$ be some non-negative integers. Let's define strange addition of $$$a$$$ and $$$b$$$ as following: 1. write down the numbers one under another and align them by their least significant digit; 2. add them up digit by digit and concatenate the respective sums together. Assume that both numbers have an infinite number of leading zeros. For example, let's take a look at a strange addition of numbers $$$3248$$$ and $$$908$$$: You are given a string $$$c$$$, consisting of $$$n$$$ digits from $$$0$$$ to $$$9$$$. You are also given $$$m$$$ updates of form: - $$$x~d$$$ — replace the digit at the $$$x$$$-th position of $$$c$$$ with a digit $$$d$$$. Note that string $$$c$$$ might have leading zeros at any point of time. After each update print the number of pairs $$$(a, b)$$$ such that both $$$a$$$ and $$$b$$$ are non-negative integers and the result of a strange addition of $$$a$$$ and $$$b$$$ is equal to $$$c$$$. Note that the numbers of pairs can be quite large, so print them modulo $$$998244353$$$. Input Format: The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n, m \le 5 \cdot 10^5$$$) — the length of the number $$$c$$$ and the number of updates. The second line contains a string $$$c$$$, consisting of exactly $$$n$$$ digits from $$$0$$$ to $$$9$$$. Each of the next $$$m$$$ lines contains two integers $$$x$$$ and $$$d$$$ ($$$1 \le x \le n$$$, $$$0 \le d \le 9$$$) — the descriptions of updates. Output Format: Print $$$m$$$ integers — the $$$i$$$-th value should be equal to the number of pairs $$$(a, b)$$$ such that both $$$a$$$ and $$$b$$$ are non-negative integers and the result of a strange addition of $$$a$$$ and $$$b$$$ is equal to $$$c$$$ after $$$i$$$ updates are applied. Note that the numbers of pairs can be quite large, so print them modulo $$$998244353$$$. Note: After the first update $$$c$$$ is equal to $$$14$$$. The pairs that sum up to $$$14$$$ are: $$$(0, 14)$$$, $$$(1, 13)$$$, $$$(2, 12)$$$, $$$(3, 11)$$$, $$$(4, 10)$$$, $$$(5, 9)$$$, $$$(6, 8)$$$, $$$(7, 7)$$$, $$$(8, 6)$$$, $$$(9, 5)$$$, $$$(10, 4)$$$, $$$(11, 3)$$$, $$$(12, 2)$$$, $$$(13, 1)$$$, $$$(14, 0)$$$. After the second update $$$c$$$ is equal to $$$11$$$. After the third update $$$c$$$ is equal to $$$01$$$.