Problem D

Statement
Copy Copied
Description:
This is an interactive problem.

Ayush devised a new scheme to set the password of his lock. The lock has $$$k$$$ slots where each slot can hold integers from $$$1$$$ to $$$n$$$. The password $$$P$$$ is a sequence of $$$k$$$ integers each in the range $$$[1, n]$$$, $$$i$$$-th element of which goes into the $$$i$$$-th slot of the lock.

To set the password of his lock, Ayush comes up with an array $$$A$$$ of $$$n$$$ integers each in the range $$$[1, n]$$$ (not necessarily distinct). He then picks $$$k$$$ non-empty mutually disjoint subsets of indices $$$S_1, S_2, ..., S_k$$$ $$$(S_i \underset{i \neq j} \cap S_j = \emptyset)$$$ and sets his password as $$$P_i = \max\limits_{j \notin S_i} A[j]$$$. In other words, the $$$i$$$-th integer in the password is equal to the maximum over all elements of $$$A$$$ whose indices do not belong to $$$S_i$$$.

You are given the subsets of indices chosen by Ayush. You need to guess the password. To make a query, you can choose a non-empty subset of indices of the array and ask the maximum of all elements of the array with index in this subset. You can ask no more than 12 queries.

Input Format:
The first line of the input contains a single integer $$$t$$$ $$$(1 \leq t \leq 10)$$$ — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers $$$n$$$ and $$$k$$$ $$$(2 \leq n \leq 1000, 1 \leq k \leq n)$$$ — the size of the array and the number of subsets. $$$k$$$ lines follow. The $$$i$$$-th line contains an integer $$$c$$$ $$$(1 \leq c \lt n)$$$ — the size of subset $$$S_i$$$, followed by $$$c$$$ distinct integers in the range $$$[1, n]$$$  — indices from the subset $$$S_i$$$.

It is guaranteed that the intersection of any two subsets is empty.

Output Format:
None

Note:
The array $$$A$$$ in the example is $$$[1, 2, 3, 4]$$$. The length of the password is $$$2$$$. The first element of the password is the maximum of $$$A[2]$$$, $$$A[4]$$$ (since the first subset contains indices $$$1$$$ and $$$3$$$, we take maximum over remaining indices). The second element of the password is the maximum of $$$A[1]$$$, $$$A[3]$$$ (since the second subset contains indices $$$2$$$, $$$4$$$).

Do not forget to read the string "Correct" / "Incorrect" after guessing the password.