Description: Orac is studying number theory, and he is interested in the properties of divisors. For two positive integers $$$a$$$ and $$$b$$$, $$$a$$$ is a divisor of $$$b$$$ if and only if there exists an integer $$$c$$$, such that $$$a\cdot c=b$$$. For $$$n \ge 2$$$, we will denote as $$$f(n)$$$ the smallest positive divisor of $$$n$$$, except $$$1$$$. For example, $$$f(7)=7,f(10)=2,f(35)=5$$$. For the fixed integer $$$n$$$, Orac decided to add $$$f(n)$$$ to $$$n$$$. For example, if he had an integer $$$n=5$$$, the new value of $$$n$$$ will be equal to $$$10$$$. And if he had an integer $$$n=6$$$, $$$n$$$ will be changed to $$$8$$$. Orac loved it so much, so he decided to repeat this operation several times. Now, for two positive integers $$$n$$$ and $$$k$$$, Orac asked you to add $$$f(n)$$$ to $$$n$$$ exactly $$$k$$$ times (note that $$$n$$$ will change after each operation, so $$$f(n)$$$ may change too) and tell him the final value of $$$n$$$. For example, if Orac gives you $$$n=5$$$ and $$$k=2$$$, at first you should add $$$f(5)=5$$$ to $$$n=5$$$, so your new value of $$$n$$$ will be equal to $$$n=10$$$, after that, you should add $$$f(10)=2$$$ to $$$10$$$, so your new (and the final!) value of $$$n$$$ will be equal to $$$12$$$. Orac may ask you these queries many times. Input Format: The first line of the input is a single integer $$$t\ (1\le t\le 100)$$$: the number of times that Orac will ask you. Each of the next $$$t$$$ lines contains two positive integers $$$n,k\ (2\le n\le 10^6, 1\le k\le 10^9)$$$, corresponding to a query by Orac. It is guaranteed that the total sum of $$$n$$$ is at most $$$10^6$$$. Output Format: Print $$$t$$$ lines, the $$$i$$$-th of them should contain the final value of $$$n$$$ in the $$$i$$$-th query by Orac. Note: In the first query, $$$n=5$$$ and $$$k=1$$$. The divisors of $$$5$$$ are $$$1$$$ and $$$5$$$, the smallest one except $$$1$$$ is $$$5$$$. Therefore, the only operation adds $$$f(5)=5$$$ to $$$5$$$, and the result is $$$10$$$. In the second query, $$$n=8$$$ and $$$k=2$$$. The divisors of $$$8$$$ are $$$1,2,4,8$$$, where the smallest one except $$$1$$$ is $$$2$$$, then after one operation $$$8$$$ turns into $$$8+(f(8)=2)=10$$$. The divisors of $$$10$$$ are $$$1,2,5,10$$$, where the smallest one except $$$1$$$ is $$$2$$$, therefore the answer is $$$10+(f(10)=2)=12$$$. In the third query, $$$n$$$ is changed as follows: $$$3 \to 6 \to 8 \to 10 \to 12$$$.