Description: Vasya has a string $$$s$$$ of length $$$n$$$. He decides to make the following modification to the string: 1. Pick an integer $$$k$$$, ($$$1 \leq k \leq n$$$). 2. For $$$i$$$ from $$$1$$$ to $$$n-k+1$$$, reverse the substring $$$s[i:i+k-1]$$$ of $$$s$$$. For example, if string $$$s$$$ is qwer and $$$k = 2$$$, below is the series of transformations the string goes through: qwer (original string) wqer (after reversing the first substring of length $$$2$$$) weqr (after reversing the second substring of length $$$2$$$) werq (after reversing the last substring of length $$$2$$$) Hence, the resulting string after modifying $$$s$$$ with $$$k = 2$$$ is werq. Vasya wants to choose a $$$k$$$ such that the string obtained after the above-mentioned modification is lexicographically smallest possible among all choices of $$$k$$$. Among all such $$$k$$$, he wants to choose the smallest one. Since he is busy attending Felicity 2020, he asks for your help. A string $$$a$$$ is lexicographically smaller than a string $$$b$$$ if and only if one of the following holds: - $$$a$$$ is a prefix of $$$b$$$, but $$$a \ne b$$$; - in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ has a letter that appears earlier in the alphabet than the corresponding letter in $$$b$$$. Input Format: Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 5000$$$). The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 5000$$$) — the length of the string $$$s$$$. The second line of each test case contains the string $$$s$$$ of $$$n$$$ lowercase latin letters. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$5000$$$. Output Format: For each testcase output two lines: In the first line output the lexicographically smallest string $$$s'$$$ achievable after the above-mentioned modification. In the second line output the appropriate value of $$$k$$$ ($$$1 \leq k \leq n$$$) that you chose for performing the modification. If there are multiple values of $$$k$$$ that give the lexicographically smallest string, output the smallest value of $$$k$$$ among them. Note: In the first testcase of the first sample, the string modification results for the sample abab are as follows : - for $$$k = 1$$$ : abab - for $$$k = 2$$$ : baba - for $$$k = 3$$$ : abab - for $$$k = 4$$$ : babaThe lexicographically smallest string achievable through modification is abab for $$$k = 1$$$ and $$$3$$$. Smallest value of $$$k$$$ needed to achieve is hence $$$1$$$.