Description: The only difference between easy and hard versions is the maximum value of $$$n$$$. You are given a positive integer number $$$n$$$. You really love good numbers so you want to find the smallest good number greater than or equal to $$$n$$$. The positive integer is called good if it can be represented as a sum of distinct powers of $$$3$$$ (i.e. no duplicates of powers of $$$3$$$ are allowed). For example: - $$$30$$$ is a good number: $$$30 = 3^3 + 3^1$$$, - $$$1$$$ is a good number: $$$1 = 3^0$$$, - $$$12$$$ is a good number: $$$12 = 3^2 + 3^1$$$, - but $$$2$$$ is not a good number: you can't represent it as a sum of distinct powers of $$$3$$$ ($$$2 = 3^0 + 3^0$$$), - $$$19$$$ is not a good number: you can't represent it as a sum of distinct powers of $$$3$$$ (for example, the representations $$$19 = 3^2 + 3^2 + 3^0 = 3^2 + 3^1 + 3^1 + 3^1 + 3^0$$$ are invalid), - $$$20$$$ is also not a good number: you can't represent it as a sum of distinct powers of $$$3$$$ (for example, the representation $$$20 = 3^2 + 3^2 + 3^0 + 3^0$$$ is invalid). Note, that there exist other representations of $$$19$$$ and $$$20$$$ as sums of powers of $$$3$$$ but none of them consists of distinct powers of $$$3$$$. For the given positive integer $$$n$$$ find such smallest $$$m$$$ ($$$n \le m$$$) that $$$m$$$ is a good number. You have to answer $$$q$$$ independent queries. Input Format: The first line of the input contains one integer $$$q$$$ ($$$1 \le q \le 500$$$) β the number of queries. Then $$$q$$$ queries follow. The only line of the query contains one integer $$$n$$$ ($$$1 \le n \le 10^4$$$). Output Format: For each query, print such smallest integer $$$m$$$ (where $$$n \le m$$$) that $$$m$$$ is a good number. Note: None