Description: You are given $$$n$$$ positive integers $$$a_1, \ldots, a_n$$$, and an integer $$$k \geq 2$$$. Count the number of pairs $$$i, j$$$ such that $$$1 \leq i < j \leq n$$$, and there exists an integer $$$x$$$ such that $$$a_i \cdot a_j = x^k$$$. Input Format: The first line contains two integers $$$n$$$ and $$$k$$$ ($$$2 \leq n \leq 10^5$$$, $$$2 \leq k \leq 100$$$). The second line contains $$$n$$$ integers $$$a_1, \ldots, a_n$$$ ($$$1 \leq a_i \leq 10^5$$$). Output Format: Print a single integer — the number of suitable pairs. Note: In the sample case, the suitable pairs are: - $$$a_1 \cdot a_4 = 8 = 2^3$$$; - $$$a_1 \cdot a_6 = 1 = 1^3$$$; - $$$a_2 \cdot a_3 = 27 = 3^3$$$; - $$$a_3 \cdot a_5 = 216 = 6^3$$$; - $$$a_4 \cdot a_6 = 8 = 2^3$$$.