Description: Suppose you are given a sequence $$$S$$$ of $$$k$$$ pairs of integers $$$(a_1, b_1), (a_2, b_2), \dots, (a_k, b_k)$$$. You can perform the following operations on it: 1. Choose some position $$$i$$$ and increase $$$a_i$$$ by $$$1$$$. That can be performed only if there exists at least one such position $$$j$$$ that $$$i \ne j$$$ and $$$a_i = a_j$$$. The cost of this operation is $$$b_i$$$; 2. Choose some position $$$i$$$ and decrease $$$a_i$$$ by $$$1$$$. That can be performed only if there exists at least one such position $$$j$$$ that $$$a_i = a_j + 1$$$. The cost of this operation is $$$-b_i$$$. Each operation can be performed arbitrary number of times (possibly zero). Let $$$f(S)$$$ be minimum possible $$$x$$$ such that there exists a sequence of operations with total cost $$$x$$$, after which all $$$a_i$$$ from $$$S$$$ are pairwise distinct. Now for the task itself ... You are given a sequence $$$P$$$ consisting of $$$n$$$ pairs of integers $$$(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)$$$. All $$$b_i$$$ are pairwise distinct. Let $$$P_i$$$ be the sequence consisting of the first $$$i$$$ pairs of $$$P$$$. Your task is to calculate the values of $$$f(P_1), f(P_2), \dots, f(P_n)$$$. Input Format: The first line contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$) — the number of pairs in sequence $$$P$$$. Next $$$n$$$ lines contain the elements of $$$P$$$: $$$i$$$-th of the next $$$n$$$ lines contains two integers $$$a_i$$$ and $$$b_i$$$ ($$$1 \le a_i \le 2 \cdot 10^5$$$, $$$1 \le b_i \le n$$$). It is guaranteed that all values of $$$b_i$$$ are pairwise distinct. Output Format: Print $$$n$$$ integers — the $$$i$$$-th number should be equal to $$$f(P_i)$$$. Note: None